首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24905篇
  免费   3380篇
  国内免费   802篇
  2023年   126篇
  2022年   200篇
  2021年   521篇
  2020年   417篇
  2019年   497篇
  2018年   605篇
  2017年   516篇
  2016年   692篇
  2015年   919篇
  2014年   1076篇
  2013年   1167篇
  2012年   1378篇
  2011年   1411篇
  2010年   828篇
  2009年   838篇
  2008年   959篇
  2007年   917篇
  2006年   839篇
  2005年   766篇
  2004年   710篇
  2003年   671篇
  2002年   617篇
  2001年   2383篇
  2000年   2200篇
  1999年   1551篇
  1998年   475篇
  1997年   492篇
  1996年   412篇
  1995年   379篇
  1994年   295篇
  1993年   242篇
  1992年   745篇
  1991年   614篇
  1990年   509篇
  1989年   399篇
  1988年   313篇
  1987年   248篇
  1986年   187篇
  1985年   141篇
  1984年   87篇
  1983年   68篇
  1982年   49篇
  1981年   42篇
  1980年   26篇
  1979年   30篇
  1978年   27篇
  1976年   30篇
  1974年   24篇
  1973年   30篇
  1970年   24篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
51.
52.
53.
The control of subcellular mRNA localization and translation is often mediated by protein factors that are directly or indirectly associated with the cytoskeleton. We report the identification and characterization of a rice seed protein that possesses both RNA and microtubule binding activities. In vitro UV cross-linking assays indicated that this protein binds to all mRNA sequences tested, although there was evidence for preferential binding to RNAs that contained A-C nucleotide sequence motifs. The protein was purified to homogeneity using a two-step procedure, and amino acid sequencing identified it as the multifunctional protein (MFP), a peroxisomal enzyme known to possess a number of activities involved in the beta-oxidation of fatty acids. The recombinant version of this rice MFP binds to RNA in UV cross-linking and gel mobility shift experiments, co-sediments specifically with microtubules, and possesses at least two enzymatic activities involved in peroxisomal fatty acid beta-oxidation. Taken together these data suggest that MFP has an important role in mRNA physiology in the cytoplasm, perhaps in regulating the localization or translation of mRNAs through an interaction with microtubules, in addition to its peroxisomal function.  相似文献   
54.
6-(1-Hydroxyalkyl)-5,8-dimethoxy-1,4-naphthoquinones, expressing a higher reactivity in conjugation with glutathione, showed a greater potency in the inhibition of DNA topoisomerase-I and the cytotoxicity against L1210 cells than 2-(1-hydroxyalkyl)-DMNQ derivatives, implying the participation of electrophilic arylation in the bioactivities. In further study 6-(1-Hydroxyalkyl)-5,8-dimethoxy-1,4-naphthoquinones with an alkyl group of shorter chain length (C2-C6) exerted a greater bioactivities than those with longer chain length(>C6).  相似文献   
55.
The soluble ectodomain of fibroblast growth factor receptor-IIIc (sFGFR2c) is able to bind to fibroblast growth factor (FGF) ligands and block the activation of the FGF-signaling pathway. In this study, sFGFR2c inhibited lung fibrosis dramatically in vitro and in vivo. The upregulation of α-smooth muscle actin (α-SMA) in fibroblasts by transforming growth factor-β1 (TGF-β1) is an important step in the process of lung fibrosis, in which FGF-2, released by TGF-β1, is involved. sFGFR2c inhibited α-SMA induction by TGF-β1 via both the extracellular signal-regulated kinase 1/2 (ERK1/2) and Smad3 pathways in primary mouse lung fibroblasts and the proliferation of mouse lung fibroblasts. In a mouse model of bleomycin (BLM)-induced lung fibrosis, mice were treated with sFGFR2c from d 3 or d 10 to 31 after BLM administration. Then we used hematoxylin and eosin staining, Masson staining and immunohistochemical staining to evaluate the inhibitory effects of sFGFR2c on lung fibrosis. The treatment with sFGFR2c resulted in significant attenuation of the lung fibrosis score and collagen deposition. The expression levels of α-SMA, p-FGFRs, p-ERK1/2 and p-Smad3 in the lungs of sFGFR2c-treated mice were markedly lower. sFGFR2c may have potential for the treatment of lung fibrosis as an FGF-2 antagonist.  相似文献   
56.
Aims:  Antibiotics from Bacillus subtilis JA show strong pathogen inhibition ability, which has potential market application; yet, the composition of these antibiotics has not been elucidated. The aim of this paper is to isolate and identify these antibiotics.
Methods and Results:  The antagonistic activity of JA was tested in vitro ; it exhibited strong inhibition against some important phytopathogens and postharvest pathogens. Crude antibiotic production was extracted with methanol from the precipitate by adding 6 mol l−1 HCl to the bacillus-free culture broth. The crude extract was run on Diamonsil C18 column (5  μ m, 250 × 4·6 mm) in HPLC system to separate the antibiotics. Major antibiotics were classified into three lipopeptide families according to electrospray ionization–mass spectrometry analysis. Subsequently, the classification of antibiotics was confirmed with typical collision-induced dissociation fragments.
Conclusions:  Three kinds of antibiotics were isolated from B. subtilis JA and were identified to the lipopeptide families, surfactin, iturin and fengycin. These compounds could function as biocontrol agents against a large spectrum of pathogens.
Significance and Impact of the Study:  This study provided a reliable and rapid method for isolation and structural characterization of lipopeptide antibiotics from B. subtilis .  相似文献   
57.
58.
59.
60.
This study aims to explore the potential mechanisms of Xinnaokang in atherosclerosis treatment. Firstly, the active components of Xinnaokang were analysed by HPLC, which contains ginsenoside Rg1, puerarin, tanshinone, notoginsenoside R1, ammonium glycyrrhizate and glycyrrhizin. Network pharmacology analysis showed there were 145 common targets of Xinnaokang, including the chemical stress, lipid metabolite, lipopolysaccharide, molecules of bacterial origin, nuclear receptor and fluid shear stress pathways. Then, the animal experiment showed that Xinnaokang reduced the body weight and blood lipid levels of atherosclerotic mice. Vascular plaque formation was increased in atherosclerotic mice, which was markedly reversed by Xinnaokang. In addition, Xinnaokang reduced CAV-1 expression and increased ABCA1, SREBP-1 and LXR expressions in the vasculature. Xinnaokang promoted SREBP-2 and LDLR expressions in the liver but decreased IDOL and PCSK9 expressions, indicating that Xinnaokang regulated lipid transport-related protein expression. Cecal microbiota diversity was reduced in atherosclerotic mice but increased after Xinnaokang treatment. Xinnaokang treatment also improved gut microbiota communities by enriching Actinobacteria, Bifidobacteriales and Bifidobacteriaceae abundances. Metabolic profile showed that Xinnaokang significantly reduced homogentisate, phenylacetylglycine, alanine and methionine expressions in the liver of atherosclerotic mice. Xinnaokang effectively alleviated atherosclerosis, and this effect might be linked with the altered features of the liver metabolite profiles and cecal microbiota.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号